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Abstract

Recently, it was reported [M. Masoudi, W.A. Sirignano, In¯uence of an advecting vortex on the heat transfer to

a liquid droplet, Int. J. Heat Mass Transfer 40 (15) (1997) 3663±3673] that when sphere heating in a uniform ¯ow is
perturbed by vortex motion, global self-similarity is observed and the resulting correlation predicts that the sphere
Nusselt number ¯uctuations due to vortex motion scale with the vortex circulation with unity exponent: Nu '0G0/
(2p ) (Nu '=perturbation in sphere Nusselt number, G0=non-dimensionalized initial vortex circulation). It is shown

here that this computational observation is also obtained using Reynolds analogy. # 1999 Elsevier Science Ltd. All
rights reserved.

1. Discussion

A widely used correlation [1] predicts that the heat-
ing of a cold sphere in a hot gas stream follows

Nuax � 1� �1� Pr Re�1=3 Re0:077 �1�

in the range 1<Re<400, 0.25<Pr<100. This corre-

lation is however applicable only when the sphere heat-
ing takes place in an axisymmetric (uniform) ¯ow.
To observe the e�ect of vortical perturbations as

well as to gain insight into sphere heating in an asym-
metric ¯ow, three-dimensional interactions between a
cold sphere embraced in a hot uniform gas stream and
a Rankine vortex advecting in the gas phase were

simulated using full Navier±Stokes and energy
equations [2]. The numerical experimentation demon-
strated that the sphere Nusselt number in a uniform

¯ow perturbed by vortex motion is predicted by
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Here, Nuax is the same as Nuax in Eq. (1) and Nuasym
is the time-averaged Nusselt number in the perturbed
¯ow Nuasym(t ). It is therefore fair to denote the left-

hand-side of this equation Nuasym/Nuax ÿ 10Nu ' with
Nu ' being the net perturbation in sphere Nu. Note that
here the base-¯ow is `perturbed' by the motion of the

vortex, i.e. the vortex is not strong enough to reverse
the base-¯ow.
When a vortex is relatively far from the sphere, it

appears to the sphere as a point vortex. Therefore, Eq.
(2) [with d0/s

0.6
0 w1, thus, tanh( ) 4 1] states that the

Nusselt number variations are proportional to the vor-

tex circulation
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There is a rather surprising observation hereÐit
appears that the sphere heating continually depends on

the base ¯ow Reynolds number with non-unity expo-
nents [Eqs. (1), (2); Nuax, Nu '0Rem, m$1]. However,
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the sphere heating depends on the vortex circulation
with a unity exponent [Eq. (3)]. There seems to exist

no explanation for this shift in exponents.
The goal here is two-fold. First, the rigorous compu-

tational observation resulting in the role of vortex cir-

culation G0 in Nu ' (Eq. (3)) is shown to be also
predicted using Reynolds analogy. Second, Reynolds
analogy provides insight into the unity exponent of the
vortex circulation.

Reynolds analogy, which relates ¯uid ¯ow to heat
transfer, yields the following for the heating of a
sphere in an axisymmetric ¯ow [3]

St
��������
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p
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We substitute for
��������
Rex
p

with
������
Re
p

and therefore, for
Nu with Nuax in St=Nu/(Re Pr ). (This substitution is

justi®ed since, analogous to Eq. (2), the Nusselt num-
ber is averaged ®rst over the sphere surface and then
in time, so that here ` ' represents an averaging ®rst in

space, then in time.) The following can then be derived
for sphere heating in an axisymmetric ¯ow:

Nuax0Re0:5 Pr0:4: �4�
In an axisymmetric ¯ow, the dynamic interaction is
merely due to the base-¯ow and is represented by Re.
However, when the base-¯ow is perturbed by vortex

motion, the interaction is not merely due to the base-
¯ow, but due to a perturbed one: Re+Rev. Using this

in lieu of Re in Eq. (4) and therefore, replacing Nuax
with Nuasym, expanding using the Taylor series, deduct-
ing Eq. (4) from the result, dividing through by Eq.

(4), and denoting Nuasym/Nuax ÿ 1 by Nu ' as before,
one derives
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but
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therefore,
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which is the same as Eq. (3). Two observations are
made here. First, and foremost, the functional depen-

dency of the sphere Nusselt number perturbation Nu '
on the vortex circulation G0, which was derived
through numerical experimentation (Eq. (3), Ref. [2]),

is con®rmed by Reynolds analogy. Second, in this
dependency, the unity exponent in G0 is the conse-
quence of the relative signi®cance of the vortex

Nomenclature

a droplet radius (characteristic length)
d0 initial vortex location (non-dimensionalized by a �)
Nu Nusselt number

Pr Prandtl number
Re =U �1(2a

�)/n �, base-¯ow Reynolds number
Rev =v �max,0(2s

�
0)/n �, vortex Reynolds number

St =Nu/(Re Pr ), Stanton number

U1 far upstream gas ®eld velocity (characteristic velocity)
vmax vortex maximum tangential velocity (non-dimensionalized by U �1).

Greek symbols

G0 =2ps0vmax,0, non-dimensionalized initial vortex tube circulation
n gas kinematic viscosity
s radius of vortex tube (non-dimensionalized by a �).

Subscripts

asym quantity in the asymmetric ¯ow (i.e. with vortex)
ax quantity in the axisymmetric (uniform) ¯ow (i.e. with no vortex)
v vortex quantity

0 initial quantity.

Superscript
� dimensional quantity

time-averaged quantity.
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Reynolds number to the base-¯ow Reynolds number:
Rev/Re.
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